
Introduction to Git
Presented by

Robben Migacz 
Scientific Consultant



2

Please note

We will be using Git from the command line. If you are not 
familiar with the basics of navigating the Linux command 
line (e.g., cd, ls, a text editor), we recommend going 
through our introductory Linux training sessions first.



2

Please note

We will be using Git from the command line. If you are not 
familiar with the basics of navigating the Linux command 
line (e.g., cd, ls, a text editor), we recommend going 
through our introductory Linux training sessions first.

We won’t be doing anything too complicated, 
so you can probably follow along even if you 

don’t have experience using the command line



3

Please note

You can use Git from the command line on the Center for 
High Performance Computing’s Linux resources (the 
clusters). If you do not have a CHPC account, however, 
please download Git so you can follow along.



4

Installing Git

• Windows: Download Git for Windows from your browser 

• macOS: 

• Run git from the Terminal application, which will prompt you to install it 

• Alternatively, Git is also available through Homebrew or MacPorts 

• Linux: 

• Use Git on CHPC resources with module load git 

• sudo apt install git (Debian, Ubuntu, Linux Mint, etc.) or sudo dnf install git (Red 
Hat Enterprise Linux, Fedora Linux, Rocky Linux, etc.) 

… or get Git via Git: git clone https://github.com/git/git ? ?



5

What is Git?

Git is version control software. It helps you keep track of different 
versions of your files.



6

What is Git?

Git is version control software. It helps you keep track of different 
versions of your files.

my_file my_file_3my_file_2 my_file_fixed

my_file_final my_file_final_ 
final

my_file_FINAL

Does this look 
familiar? 
Consider using Git to 
manage versions!



7

What is Git?

Git is version control software. It helps you keep track of different 
versions of your files. This is particularly helpful when you are working on 
a project with other people, as it can help your team stay organized.



8

What is Git?

Git is not the same thing as GitHub. The two are often conflated by new 
users. GitHub is a web platform that is used to store, share, and work on 
Git repositories. (Learning Git will help you understand GitHub, so don’t 
close the window just yet if this isn’t quite what you were expecting.)

Git is open-source software. It is not owned or maintained by GitHub. As 
of Fall 2024, its source code has more than 1,700 contributors.



9

Who uses Git?

Git is used primarily by software developers.



10

Who uses Git?

Git is used primarily by software 
developers. 

In the Stack Overflow Developer Survey 
2021, more than 93% of respondents 
said they use Git.



10

Who uses Git?

Git is used primarily by software 
developers. 

In the Stack Overflow Developer Survey 
2021, more than 93% of respondents 
said they use Git.

Developers who should probably start using Git



11

Git isn’t just for software developers

Git will help you keep track of 
changes to any of your files. It works 
best with plain text (anything 
human-readable in a text editor) 
and relatively small files. 

It works well with LaTeX documents, 
for example.

However,



12

Let’s learn how to use Git!



13

Git … frustrates me because, while it is an excellent 
productivity tool that lets scores of developers collaborate 
on a single code base without clobbering each other, it asks 
its users to understand how it works at its deepest levels. 
It’s like if you were going to write a letter and first had to 
read a treatise on UTF-8 encoding. 

— Sharon Cichelli, “Git is a Directed Acyclic Graph and What the 
Heck Does That Mean?”, 2017



14

We’ll need to cover some 
terminology before we can move 
into the hands-on material. 

Git can be difficult to understand at 
first; taking a step back to see the 
big picture will help when we start 
looking at commands.



Terminology: Repository
15

A repository is where the revision history of a project is 
stored. It’s a hidden directory, .git, within the directory your 
project resides in. 

The .git directory’s name starts with a period, which means it’s “hidden.” 
Depending on your file browser’s settings, you may not be able to see it. You 
probably won't need to; we’ll use commands to interact with the repository. 

Just know that your project history doesn’t live in a mysterious database or “in the 
cloud.” It’s just a collection of files in the same directory as your project.



Terminology: Repository
16

There are a few important things to note about repositories:



Terminology: Repository
16

There are a few important things to note about repositories:

• If you delete the .git directory, you lose your project history (and you are stuck 
with the current state of your files)



Terminology: Repository
16

There are a few important things to note about repositories:

• If you delete the .git directory, you lose your project history (and you are stuck 
with the current state of your files)

• If you make a backup copy of your project directory, you also make a backup 
copy of your Git repository (contained within the project directory) 

• We always recommend backing up your important files!



Terminology: Repository
16

There are a few important things to note about repositories:

• If you delete the .git directory, you lose your project history (and you are stuck 
with the current state of your files)

• If you make a backup copy of your project directory, you also make a backup 
copy of your Git repository (contained within the project directory) 

• We always recommend backing up your important files!

• If you send your project directory, including .git, to another person, the other 
person can see your project history



Terminology: Repository
16

There are a few important things to note about repositories:

• If you delete the .git directory, you lose your project history (and you are stuck 
with the current state of your files)

• If you make a backup copy of your project directory, you also make a backup 
copy of your Git repository (contained within the project directory) 

• We always recommend backing up your important files!

• If you send your project directory, including .git, to another person, the other 
person can see your project history

• You should avoid storing sensitive information or passwords in a Git repository, 
especially if there is a possibility that you might share your work with others or 
use a host like GitHub



Terminology: Commits
17

Git does not keep track of every change you make; it is not 
the same as having an undo button or a file history. Instead, 
you commit changes as you see fit.



18

With Git, every time you commit, or save the state of your 
project, Git basically takes a picture of what all your files 
look like at that moment and stores a reference to that 
snapshot. 

— Pro Git (2nd Edition), Scott Chacon and Ben Straub, 2014



Terminology: Commits
19

Commits have metadata such as the committer, the author (usually the same as 
the committer, but not always), the time, and a message describing the changes. 

Every commit has an associated hash, which is the name of the commit according 
to Git. This is how you reference a specific commit. You can truncate (shorten) the 
hash in commands.



Terminology: Working tree and staging area (index)
20

Before you can make a commit, you need to tell Git which 
changes you want it to keep track of. You first work on files in 
the working tree. You then move files with changes you 
want to commit to the staging area or index. Only changes 
in the staging area are included in commits.

Working tree Staging area Local repository 
(commits)

add commit



Terminology: Graph
21

Together, commits form a (directed acyclic) graph. 

• Graph: Commits (vertices) are related (connected by edges) 

• Directed: Commits refer back to other commits (earlier versions); there is a 
direction inherent to relationships between commits 

• Acyclic: If you follow the graph from a commit, that commit will not appear 
again; it cannot be its own “parent” (no matter how many generations 
removed) 

• In other words, a version of your project cannot be based on itself 

• There are no loops in the graph



22

Let’s apply these concepts and start using Git!



23

In practice: Getting help

Git comes with documentation that can help you learn more about each 
command. To get help with git commit, for example, run 

git help commit 

Additionally, there are a few built-in tutorials and a glossary: 

git help tutorial 
git help everyday 
git help workflows 
git help glossary



24

In practice: Repositories and configuration

You can initialize a Git repository in any directory by running 

git init 

You can configure your username, email address, and preferred text editor 
with git config. 

git config --global user.name "Your Name" 
git config --global user.email "your.name@your.domain" 
git config --global core.editor "nano"



25

In practice: Repositories and configuration

--global sets a default value; you can omit it to 
apply a configuration to the current repository 

(but not other repositories)

You can initialize a Git repository in any directory by running 

git init 

You can configure your username, email address, and preferred text editor 
with git config. 

git config --global user.name "Your Name" 
git config --global user.email "your.name@your.domain" 
git config --global core.editor "nano"



26

Hands-on: Repositories and configuration

1. Create a new directory and initialize a Git repository in it 

2. Configure your name, email, and text editor through Git 

3. Run git status to check that the repository exists 
This command will show you which files are in the staging area and which have been modified in 
the working tree.



27

In practice: Commits

You need to add files to the staging area before you commit changes. 

git add filename 
git add *.py 
git add . 
git add --all 

You can remove files from the staging area with 

git rm --cached filename



28

In practice: Commits

Once you have added your changes to the staging area, you can create a 
new commit with 

git commit 

This will open a text editor for a commit message. Alternatively, use 

git commit -m "Your message here" 

to specify a message without opening a text editor.



29

In practice: Logs and differences

Once you’ve committed your changes, you can see them in the log: 

git log --graph --all 

Additionally, you can compare two different project states: 

git diff earlier-commit later-commit 
git diff --word-diff=color earlier-commit later-commit 

Without earlier-commit and later-commit, this will compare the current 
state to the previous commit.



30

Hands-on: Commits

1. Create a file in your project directory 

2. Add your file to the staging area with git add 

3. View the repository status with git status 

4. Create a commit with git commit



31

Hands-on: Commits

1. Create a file in your project directory 

2. Add your file to the staging area with git add 

3. View the repository status with git status 

4. Create a commit with git commit 

5. Modify your file 

6. Repeat (2), (3), and (4) 

7. Use git log to see what your project history looks like; try a git dif 
between commits



Terminology: Distributed version control
32

Git is a distributed version control system. Everyone 
working on the project has a copy of the repository. There is 
no (required) single source of truth or central server. 

Everyone can always edit every file. Git makes no effort to prevent users from 
modifying the same parts of the project at the same time (often limited by 
needing to “check out” and “check in” files with a central server in other version 
control systems). Instead, users may need to manage conflicts. This isn’t as chaotic 
or scary as it sounds, though!



Terminology: Branches
33

Branches allow a project to progress in different, 
independent directions. In practice, the graph is rarely a 
straight line. 

Software developers often use branches for new features, which they 
subsequently merge into the main branch. This way, the main branch remains 
stable while developers are working on substantial changes.



Terminology: Merges and rebases
34

A merge combines commits from two or more branches into 
a new commit on a specific branch.



Terminology: Merges and rebases
35

A rebase will change the parent of a commit. It also allows 
you to combine or modify commits. 

Since it can edit the history of a project, rebasing is not recommended if you’ve 
already shared your commits with others (on a remote repository, for instance). We 
will not cover rebasing in the hands-on portion; we’ll use merges when working 
with multiple branches.



Terminology: Conflicts
36

Conflicts can occur in several situations when you’re using 
Git. They’re a normal part of using Git and not an indication 
that you’ve done something wrong (the conflict is between 
versions, not between people!). They help prevent you from 
losing information or overwriting someone else’s work.



Terminology: Merges … and conflicts
37

When merging branches, you can encounter conflicts if the 
parent commits have modifications to the same parts of the 
project. Git has no way of knowing which (if any) is the 
authoritative or correct version.



Terminology: Merges … and conflicts
37

When merging branches, you can encounter conflicts if the 
parent commits have modifications to the same parts of the 
project. Git has no way of knowing which (if any) is the 
authoritative or correct version.

Hello,

world!



Terminology: Merges … and conflicts
37

When merging branches, you can encounter conflicts if the 
parent commits have modifications to the same parts of the 
project. Git has no way of knowing which (if any) is the 
authoritative or correct version.

Hello,

world!

Hello,

Utah!

Hello,

SLC!



Terminology: Merges … and conflicts
37

When merging branches, you can encounter conflicts if the 
parent commits have modifications to the same parts of the 
project. Git has no way of knowing which (if any) is the 
authoritative or correct version.

Hello,

world!

Hello,

Utah!

Hello,

SLC!

Hello,



Utah! Hello,
SLC!

?



Terminology: Merges … and conflicts
38

When merging branches, you can encounter conflicts if the 
parent commits have modifications to the same parts of the 
project. Git has no way of knowing which (if any) is the 
authoritative or correct version.

Hello,

world!

Hello,

Utah!

Hello,

SLC!

Hello,



Utah! Hello,
SLC!

?

You can merge multiple branches 
at the same time.

This is sometimes called an “octopus merge.” 
Some Git users prefer to merge branches 

sequentially to reduce the number of 
conflicts that need to be addressed at a time.



Terminology: Merges … and conflicts
39

A merge with a conflict will result in text being added to the 
files with conflicts. Git will add both versions to the file on 
separate lines so you can pick one or write something new in 
their place. Once you’ve resolved all conflicts, you can create 
a new commit. 

<<<<<<< HEAD 
Hello, SLC! 
======= 
Hello, Utah! 
>>>>>>> other_branch



Terminology: Merges … and conflicts
39

A merge with a conflict will result in text being added to the 
files with conflicts. Git will add both versions to the file on 
separate lines so you can pick one or write something new in 
their place. Once you’ve resolved all conflicts, you can create 
a new commit. 

<<<<<<< HEAD 
Hello, SLC! 
======= 
Hello, Utah! 
>>>>>>> other_branch

We’ll talk about this later!



40

In practice: Branching and merging

To check which branch you’re on, run git branch, which will list branches 
and show an asterisk * next to the current branch. 

To create—and switch to—a new branch, use 

git switch -c new_branch_name 

To switch to an existing branch, use 

git switch other_branch_name



41

In practice: Branching and merging

To merge, switch to the branch you want to merge into (the destination 
branch) and run 

git merge some_other_branch 

New users sometimes forget which branch they should be on when 
merging. The branch you are on when you perform the merge is the branch 
to which the new commit will be added. Think of a merge as an extension 
of git commit.



42

Hands-on: Branches and merges

1. Create a new branch (and switch to it) 

2. Edit your files and commit your changes 

3. Switch back to your other branch (how do you get a list of the names 
of branches?) 

4. Perform a merge to incorporate changes you made in your new 
branch 

5. Can you cause (and resolve) a merge conflict?



Terminology: References and HEAD
43

We’ve been using the names of branches in commands. These are references to 
specific commits. Branch references refer to the tip (the most recent commit) of a 
branch. This may also be called the head (not to be confused with the HEAD). 

We also saw HEAD earlier. HEAD refers to the current commit: the one we’re 
looking at right now. Usually, HEAD is a head (the tip of a branch), but we can 
move it anywhere we want to look at or work on files as they were at that commit. 
This is called a “detached HEAD.”



Terminology: References and HEAD
43

We’ve been using the names of branches in commands. These are references to 
specific commits. Branch references refer to the tip (the most recent commit) of a 
branch. This may also be called the head (not to be confused with the HEAD). 

We also saw HEAD earlier. HEAD refers to the current commit: the one we’re 
looking at right now. Usually, HEAD is a head (the tip of a branch), but we can 
move it anywhere we want to look at or work on files as they were at that commit. 
This is called a “detached HEAD.”

Typical: Working at the 
tip of a branch

Detached HEAD: 
Working on top of a 

specific commit



Terminology: References and HEAD
44

Remember that, according to Chacon and Straub 
(Pro Git), “Git basically takes a picture of what all 
your files look like” when you make a commit. 

If your commits are a series of pictures, HEAD is the 
one you’re looking at (working on) right now.

Image credit: Girl with red hat on Unsplash 
Unsplash License



Terminology: Reverting and resetting
45

References are an important concept as we start discussing reverting and 
resetting. While I mentioned that Git is not the same as having an undo button, 
sometimes you do want to undo changes. 

There are a few different strategies for this. Before we get into the different options, it’s important to note that 
nondestructive operations are always preferred if you are working with other people (if you’ve shared your 
repository). In other words, actually deleting information should be done sparingly—preferably before you 
update a remote repository or send your files to someone.



Terminology: Reverting
46

Reverting is a nondestructive option to undo changes. Reverting always creates 
new commits; it does not remove anything from the project history. 

There are a few quirks that you should be aware of before you start reverting. Please 
refer to the handout for more information.



Terminology: Reverting
47



Terminology: Reverting
47



Terminology: Reverting
47



Terminology: Resetting
48

Resetting can be a destructive option to undo changes. It works by moving the 
branch reference (and HEAD). 

This can “orphan” commits (it doesn’t actually delete them). If you accidentally reset, you 
may be able to recover your commits. They will, however, be deleted when Git performs 
garbage collection. 

There are a few quirks that you should be aware of before you start resetting. Please 
refer to the handout for more information.



49

In practice: Checking out, reverting, and resetting

To work “on top of” a specific commit, use 

git checkout some-commit 

To revert, use 

git revert some-commit 
See handout for more information; this only operates on one commit unless you specify a range 

To reset, use 

git reset some-commit 
See handout for more information; this can be --hard, --mixed (default), or --soft



50

Hands-on: Branches and merges

1. Create a new commit; run a git dif on the last two commits 

2. revert your new commit; run a git dif on the last two commits 

3. checkout a previous commit (how do you see previous commits?) 

4. Make a new branch (and switch to it) 

5. Create a new commit, then run git log --graph --all



Terminology: Remote repositories
51

Remote repositories are Git repositories that are not local to your computer. 
They’re often hosted on platforms like GitHub or GitLab. 

You can interact with remote repositories with 

• git clone to copy a remote repository to your own computer 
• git remote to configure a remote repository’s information locally 
• git fetch to get changes from a remote repository 
• git pull to get changes from a remote repository and merge them into your 

local repository 
• git push to upload changes from your local repository to a remote repository 

See the handout for more information.



Terminology: Remote repositories
52

Remote repository hosts often add features that are not a part of Git itself. These 
include such features as



Terminology: Remote repositories
52

Remote repository hosts often add features that are not a part of Git itself. These 
include such features as

• Issues, which allow users to ask questions or report problems



Terminology: Remote repositories
52

Remote repository hosts often add features that are not a part of Git itself. These 
include such features as

• Issues, which allow users to ask questions or report problems

• Pull requests, which allow users to suggest changes 

• These are important when working with others; generally, only a limited set 
of users is allowed to write to the repository itself 

• Other users first make a copy, then make changes on their copy, then 
suggest the changes to the maintainers of the original repository



Terminology: Remote repositories
52

Remote repository hosts often add features that are not a part of Git itself. These 
include such features as

• Issues, which allow users to ask questions or report problems

• Pull requests, which allow users to suggest changes 

• These are important when working with others; generally, only a limited set 
of users is allowed to write to the repository itself 

• Other users first make a copy, then make changes on their copy, then 
suggest the changes to the maintainers of the original repository

• Continuous integration and continuous delivery (build and test suites that 
run every time the repository is updated)



Terminology: Remote repositories
52

Remote repository hosts often add features that are not a part of Git itself. These 
include such features as

• Issues, which allow users to ask questions or report problems

• Pull requests, which allow users to suggest changes 

• These are important when working with others; generally, only a limited set 
of users is allowed to write to the repository itself 

• Other users first make a copy, then make changes on their copy, then 
suggest the changes to the maintainers of the original repository

• Continuous integration and continuous delivery (build and test suites that 
run every time the repository is updated)

• Machine learning-driven security reviews (a recent development)



Terminology: Remote repositories
53



Terminology: Remote repositories
53



Terminology: Remote repositories
54

The Center for High Performance Computing has a GitLab instance 
(gitlab.chpc.utah.edu) that you can use for your projects. It uses your University of 
Utah credentials. You need to be on the university’s network to use it, so you will 
need to use the university’s VPN from anywhere off-campus.

http://gitlab.chpc.utah.edu


55

You now know enough about Git to 
use it for your projects! 

We’ll continue with a few more topics, but we will 
likely not have time for hands-on exercises. Please 
refer to the handout for examples of commands.



Terminology: Stash
56

You can stash changes (your working tree and index) in the stash. This is useful to 
clear out changes you don’t need right now but may need at some point. You 
might use this, for example, when you need a “clean” working tree or index. 

You could also make a commit on a new branch, then come back to that branch 
later if you wanted to incorporate your changes into a different branch. 

Examples of using git stash are provided in the handout.



Terminology: Submodules
57

A submodule is another Git repository that you include as part of your repository. 
This is the preferred way to refer to other projects, as it allows you to reference 
specific commits in another project (without including the contents of the other 
repository in your own).

Image credit: Pierre Bamin on Unsplash 
Unsplash License



Terminology: Large File Storage (LFS)
58

Git LFS is an extension used for versioning large files. It uses “text pointers inside 
Git,” while the actual files are stored elsewhere. It’s used to keep repositories 
(relatively) small.



Terminology: Large File Storage (LFS)
58

Git LFS is an extension used for versioning large files. It uses “text pointers inside 
Git,” while the actual files are stored elsewhere. It’s used to keep repositories 
(relatively) small.

One reason to do this is so that users don’t need to download every past version of 
large files when they clone your project. (If you have a 20 GB file with 5 revisions, 
that’d be100 GB to download—and most of your users probably wouldn’t care 
about the 80 GB of old content that has since been updated.)



Terminology: Large File Storage (LFS)
58

Git LFS is an extension used for versioning large files. It uses “text pointers inside 
Git,” while the actual files are stored elsewhere. It’s used to keep repositories 
(relatively) small.

One reason to do this is so that users don’t need to download every past version of 
large files when they clone your project. (If you have a 20 GB file with 5 revisions, 
that’d be100 GB to download—and most of your users probably wouldn’t care 
about the 80 GB of old content that has since been updated.)

Note that hosts like GitHub will reject larger files (as of Fall 2024, GitHub “blocks 
files larger than 100 MB” and warns about files larger than 50 MB.)



Terminology: Tags
59

Tags allow you to give a name to a commit. They are commonly used to annotate 
specific commits with version numbers (e.g., “v1.2”).

Image credit: Kelsy Gagnebin on Unsplash 
Unsplash License



60

There are a few different files that are 
commonly added to repositories by 

developers and researchers.



.gitignore
61

A .gitignore file allows you to designate files as “intentionally untracked.” 

This is useful when you don’t want files to end up in your repository, and it allows 
you to continue using flags like --all without worrying about things like 
intermediate files (e.g., *.log and *.aux with TeX documents, object files and 
binaries, user-specific configurations that others would not be interested in). 

You can also use a different file by configuring core.excludesFile.



.gitattributes
62

A .gitattributes file allows you to specify the attributes of specific files. This lets 
you, for example, identify certain files as binary files and change dif behavior. 

In .git/config: 

[diff "pandoc"] 
textconv = pandoc --to=markdown 

In .gitattributes: 

*.docx binary diff=pandoc



README
63

A README file tells potential users and contributors about your project. The 
README is often written in Markdown, which allows you to add headings, links, 
tables, images, and other features. This is what’s displayed on project pages on 
GitHub and similar sites. 

We recommend including a README in every project!



LICENSE
64

A LICENSE file tells users the conditions under which they can use, redistribute, 
and even commercialize your project contents. Potential users or contributors may 
avoid your project if the license is unclear. 

We recommend including a LICENSE in every project!



65

We’ve only just scratched the 
surface of Git today. There are many 
other, more advanced topics that we 

don’t have time to cover in detail. 

The material we’ve covered today may be sufficient 
for your workflow, though, and you should now be 

able to understand the more advanced topics as 
you encounter them. We’ve made a lot of progress!



66

Do you have any questions?

If we don’t have time to answer your question, or if 
you think of any questions after the presentation, 
please reach out to us! helpdesk@chpc.utah.edu

mailto:helpdesk@chpc.utah.edu

