Shebang! (first line of a
script)

#!/bin/bash

#!/bin/tcsh

Multiple commands on the same
line (semicolon)

commandl; command2; command3

Extending commands across
multiple lines (backslash)

commandl argument | command2 | command3 | \
command 4 | command5 > file

Variable assignment
Setting environment variables

Unsetting a variable

VAR="Here is a string”

export VAR="Here is a string”
No spaces around the = sign!

set VAR="Here is a string”

setenv VAR “Here is a string”
No = when using setenv!

unset VAR

unset VAR

If statements

Can use == != && |[[| and
others.
String sorting with < and >

If statements with file
property testing (see
property table below)

if [[$VAR1 == $VAR2]]; then
echo "True"

else
echo "False"

fi

if [[-d $VAR]]; then
echo "Directory!
fi

if ($VAR1 == $VAR2) then
echo "True"

else
echo "False"

endif

if (-d $VAR) then
echo "Directory!"
endif

Passing arguments to a script
Corresponding variables

Assigning command output to
variables (backtick)

myscript.sh argl arg2 arg3 .. argN
$1 $2 $3 .. $N

VAR="commandl; command2; command3~ (bash)

Set VAR=”"commandl; command2; command3””

(tcsh)

String replacement

NEWVAR=${VAR/search/replace}

set NEWVAR=
"$VAR:gas/search/replace/"

For loop on a list

For loop using wildcards

For loop using commands

for i in 1 2 3 4 5; do
echo $i
done

for i in *.in; do
touch ${i/.in/.out}
done

for i in “cat files ; do
grep "string" $i >> list
done

foreach i (1 2 3 4 5)
echo $i
end

foreach i (*.in)
touch "$i:gas/.in/.out/"
end

foreach i (“cat files™)
grep "string" $i >> list
end

Test bash tcsh
Is a directory -d -d
If file exists -a,-e -e
Is a regular file (like .txt) -f -f
Readable -r -r
Writeable -w -w
Executable -X -X
Is owned by user -0 -0
Is owned by group -G -g
Is a symbolic link -h, -L -1
If the string given is zero length -z -z
If the string is length is non-zero -n -s

Compilers GCC Intel PGI
C gcc icc pgcc
C++ g++ icpc pgCC
Fortran77 g77 -- pgf77
Fortran9e gfortran ifort pgf90e
Optimization -03 -fast -fastsse

Compiler usage: gcc source.c -0 source.X
gcc -c source.c
gcc source.o -0 source.x

-0 flag is for specifying the output name. If you don’t give -o, the name of
the output will be a.out

-c flag is for compiling to an object file (object.o), without linking (c is
for compile). In order to use the object you need to compile again to link the
file.

-g flag is for setting up debugging information in the software. In order to
use that information, you need to use debugging software (like GDB or TotalView).
Use printf/write statements for easy debugging.

./configure - Used to set up a and test the compiling environment for a
software package.

./configure -prefix=<PATH> - used to specify the installation path for
installing a software package, where <PATH> is the destination of make install

make - Used to compile a complicated software package with many source
files. Must be used with a Makefile

make -f filename - specifies what makefile to use (defaults to Makefile)

make install - used after make to install the software package

